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1.0 INTRODUCTION

The ORAN program simulates a Bayesian least squares
data reduction for orbital trajectories. It does not process
data, but is intended to compute the accuracy of the results
of a data reduction if measurements of a given accuracy are
available and prbcessed in a least squares data reduction
program. Actual data tape input may be used, but if so,
this provides only the time when a measurement was available
and the estimated noise on the measurement.

It should be noted that the ORAN program is designed
to consider a data reduction process in which a number of
satellite data periods are reduced simultaneously. The term
arc refers to a specific data periéd over which one or more
satellite orbits are simultaneously integrated and tracked.
If there is more than one satellite in an arc, satellite to
satellite tracking can be analyzed by ORAN if such tracking
i1s specified on the measurement cards.

In practice, simultaneous reduction of multiple satel-
lite data periods would be done if parameters (such as
station positions or geopotential coefficients) were being
estimated which had values known to be the same for all data
periods and all satellites analyzed. If there are no adjusted
parameters common to all arcs, then the results for each arc

are completely independent.

Section 2 éontains a mathematical description of the
error analysis and Section 3 describes the partitioning of
the error analysis equations as implemented in ORAN. Section
4 gives a brief description of the type of measurement model
contained in the program and Section § describes the force

model equations which relate the epoch state being estimated



to satellite position and velocity at any other time.
Section 6 gives the mathematical formulae uscd to compute
each force acting on the satellite and the accompanying
variational equation used to relate errors in force model
parameters at epoch to errors in satellite position and

velocity at any other time.



2.0 MATHEMATICAL DESCRIPTION

The least squares estimator in most orbital deter-

mination programs(l) assumes that N measurements can be
modeled by the nonlinear regression equation

z= f(x,y) + ¢

€ (2.1)
where x contains parameters to be estimated (i.e., adjusted),
Y contains errors in parameters which are assumed to be known
constants (i.e., unadjusted) and € 1s a vector of zero mean
measurement noise. It is assumed that the covariance matrix
associated with € is diagonal. The partitioning of parameters
into x and y (i.e., adjusted and uriadjusted) is somewhat
arbitrary. For any particular problem, the data will be
insufficient to adjust all parameters subject to uncertainty,
and some reasonable subset of these parameters must be selected
for adjustment. The final errors in the adjusted parameters
can be decomposed into a component due to measurement noise

and a component due to e€rrors in the assumed values of the
unadjusted parameters. The error statistics associated with
the first are evaluated in the orbital determination

Program as a noise only covariance matrix. ORAN is used

to simulate the orbital determination processing and compute
€ITOoT statistics associated with the second component,

(1)

GEODYN Program Documentation, Volume 1, Section 10.
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Bayesian least squares estimation is characterized
by the use of a priori information on all parameters being
estimated. The estimation technique is otherwise identical

to weighted least squares. In the following, no explicit

use of a priori information will be made because of the

complexity it introduces into the form of the equations.

Further, when a priori information is viewed as simply
additional observations - as is a perfectly legitimate

procedure - then it is not necessary to treat it separately

in the mathematical development. ~

In this section we will consider first the procedure

used to derive the least squares estimation equations.

The standard nonlinear least squares estimation problem is

based on the regression equation given in (2.1).

Since the problem must be solved iteratively using

linear theory, for error analysis purposes the adjusted

parameters may be expressed as

where x

XN and Yy are nominal values which are known and

(2.2)

(2.3)

assumed to be reasonably close to the true values of X and vy.



The linearized version of Equation (2.1)‘15 given by

z = E(EN’XN) + Bdx - K Sy + ¢ (2.

where B and K are the partial derivatives of the measurement
with respect to x and y evaluated at (x = Xy» Y = IN)' The
nominal or computed mecasurement is defined as

zy T Ilxyeyy) (2.

The weighted least squares estimate of x is given

- T

5x = (B 1

WR)

where W is the weight matrix usually assumed to be given

by

W = E(_e:_E) (2.

Substituting from (2.4) and (Z.5) into (2.6), the

error in estimating éx is given by

(6x-6x) = (B wp)!

BTW(L-EN) (2.

BTW(e-Koy) (2.



The covariance of the estimate given by Equation (2.6)

.

is defined as
COV 8x = E[(6x-6x) (8x-6x)'] | (2.9)

Substituting from (2.8) into (2.9), and assuming that

6y is uncorrelated with the measurement noise,
Ty .
E(6y ) = 0, o (2.10)

it follows that

1 1 1

cov (sx) = (3Twe)t + [(8Twe)~! B3Twk] cov yrTwey) ! 3Tw)T  (2.11)

where COV y is the covariance matrix associated with'sl
_ T
COV y = E(8y 6y ) (2.12)

The total covariance is decomposed into a noise contribution
and an unadjusted parameter contribution. In most practical
situations, the noise contribution is negligible compared to

the unadjusted parameter effects.

COV 'y is usually assumed to be a diagonal matrix
implying that the components of 8y are statistically inde-
pendent. For notational convenience in the following dis-

cussions, the normal matrix is defined as

N=28TyB (2.13)



ORAN does not compute the entire systematic error
covariance matrix given in (2.11). In order to reduce
computational resource requirements only the diagonal
elements of this matrix are computed.

10<



SECTION 3.0
PARTITIONING OF THE ERROR ANALYSIS EQUATIONS

Considerable savings in both the number of computations
and core storage requirements can be achieved by partitioning
the matrices and vectors involved in Equations (2.6) and (2.7).
This is done in both GEODYN and ORAN. The ORAN partitioning
of the adjusted parameters is given by

3]
e
a
Ax, =1 B | = —E% (3.1)
X :
En
k_

where @; contains the ith arc orbital elements, B; contains
all of the other ith arc adjusted parameters, k contains
the adjusted parameters which are common to all arcs and

n is the total number of arcs processed.

In a similar way the unadjusted parameter errors are
partitioned as:

Ya :
e B Il (3.2)




where vy,  are the unadjusted parameters associated with the

i
ith arc and Yx contains the unadjusted parameters common to

all arcs.
It is assumed that the measurement noise is uncorrelated

between measurements. Thus the weight matrix can be partitioned
into arc components as:

. (3.3)

where the individual arc weight matrices Wi are also diagonal.

From the partitioning of Ais in (3.1), the matrix of
partial derivatives of the measurements with respect to the
adjusted parameters can be partitioned as

B, 0 0 B, 0 0 By ]
1 1 1
B=[B, |B (B, ] = | O Ba2 ... 0 0 Bb2 0 Bk2 (3.4)
0 0 B 0 0 B B
n an bn kn_J

From the partitioning of y im (3.2), the matrix of partial
derivatives of the measurements with respect to the unadjusted

parameters can be partitioned as



K s
2 O 0 | &y,
K 0 |k
K= (KK J = | 22 ks (3.5)
0 0 K. |K,
= an l\n

From (3.3) and (3.4) it can be shown that the normal matrix

defined in equation (2.10) is partitioned as

Bl wB BT waB BT ws
a a a b a k
- T T T
N=|8Tws | BTwB B,T W B, (3.6)
T T T
B, W3B, | BT WB BT W B,

3.1 FIRST LEVEL PARTITIONING

The first partitioning in ORAN separates the adjusted
parameters into orbital elements and all other parameters as

o
_ _ o
bXg = g I (3.1.1)
k B

and the corresponding partitioning of the normal matrix is

given by

(3.1.2)

13<
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where

N, =BT WB,
T T
N, = [B, W Bb| B, W B.]
[T | T i
B, T W B, l BT W B
N =
: B.T W B l BT w B
X b Sk K
. —

1 -
N = = M (3.1.3)

Utilizing the relatiohship NM=1, where I is the identify
matrix, it can be shown that the components of M are given

by

M, = N, beaqwm ol (3.1.4)

Mg o= (N, - NZT Q! (3.1.5)

M o= -QMy (3.1.6)
where

Q= NN,

Rewriting equation (2.6) in partitioned form

T
o M B W
AX = pol I a | abl [_a Ky (3.1.7) .
= ab b b

11 14<



where

and

Performing the matrix multiplications in (3.13) and using
equations (3.10), (3.11) and (3.12) the errors in the orbital

elements due to errors in unadjusted parameters are given by

- - T 2
@=N;, "B, WKy -Q8 (3.1.8)

And the errors in the rest of the adjusted parameters due to

errors in the unadjusted parameters are given as

p T T T -
B=M [B, -Q B ']WKy (3.1.9)

3.2 SECOND LEVEL PARTITIONING
In the second level of partitioning the common adjusted

parameters are separated from the remaining arc adjusted

parameters as

....... (3.2.1)

Jow @
1}

For notational convenience define the matrix H as

-1 B T w

H=|I -B_N
a 1 a (3.2.2)

and note that H is a diagonal matrix

12 15<



with the typical diagonal element corresponding to the ith

arc is given by

W] (3.2.3)

Using the matrix partitioning shown in equations (3.6) and (3.1.2)
equation (3.1.9) can be expanded as

T ]
Bb W H

- (K Yu * K oyl (3.2.4)

L 4L _

substituting the definitions from equation (3.8) in equation
(3.11) it can be shown that Mb is given by

= “ _1
N N
ST
Mp = = (3.2.5)
T
No | b
2 4
where
- T
Nb1 = By WHBy
' TWHB
N =
b, 5 k
\ _ T
Nb4 = B " WHB
Again using the partitioned form of the matrix inverse
-1 A ~ T
M, =N + QM Q (3.2.6)
by by by

13



where

(3.2.7)

(3.2.8)

Using the relationships from (3.21), (3.22) and (3.23) along with
the partitioned forms of K and y equation (3.19) can be written

as

3.3

the systematic error in the common adjusted parameters is

|

|

-1

(3.2.9)

ACCUMULATION OF SYSTEMATIC ERRORS AND ERROR SENSITIVITIES

Summarizing the results of the previous two sections

given by

k

4

T ~T

14

T
Kk Q Bb 1 WH [K, Yo, t Kk lk]

(3.3.1)

17<



The error in arc adjusted parameters (exclusive of
orbital elements) is given by

-1

. By WH [K, v, + Kp v - Qk (3.3.2)

b

And the error in the orbital elements is given by

= N, T Tw ok Koy ] - 2 (3.3.3)
2 = N a a Ya k Yk Qlx T

Error sensitivities are computed by taking the partial de-
rivatives of each adjusted parameter with respect to each
unadjusted parameter. In order to minimize core storage ORAN
processes one arc of data at a time. Various matrices which
involve summations over all arcs are accumulated in core.
Components of the sensitivity matrices which are indigenous
to individual arcs are temporarily stored on a tape or disk
scratch file. Therefore equations (3.25), (3.26) and (3.27)

will be used to develop these partial derivatives which will

be expressed in terms of the individual arc matrices.

From equation (3.25) the partial derivatives of the
common adjusted parameters with respect to the common un-

adjusted parameters are given by

@
| =

T ST T
- Q Bb ] WH Kk (3.3.4)

@
=
i
o

In terms of the individual arc matrices Mb can be expressed as
4

- T T -1
M, f: By, Wy Hy [I - By (By ~ W; By )
i=1 1 1 1 1

(3.3.5)

15



Expanding equation (3.28) 1n a similar manner

ok

n
- T T -1
= Mb4{§: Bki W, H. [T - By (By = W, Hi By )
i=1

Bl 1 1 1

k

B, & W; H;l Kki§

The partial derivatives of the common adjusted parameter with
respect to the unadjusted parameters of the i-th arc are

given by

(3.3.7)

From equation (3.26) the partial derivatives of the i-th arc

adjusted parameters (exclusive of the orbital element) with
respect to the common unadjusted parameters are given by

38 ; ~ ok
L (Bb_T W, H, B, ) Ly T WoH, K - Qp —
al i i i 1 . a.Y . (3.3.8)
where
~ T -1 T
Q. = (B W. H. B, ) - B W. H. B
1 bi i i bi ai i i ki

Also from equation (3.26) the partial derivatives of the i-th

arc adjusted parameters (exclusive of orbital elements) with
respect to the i-th arc unadjusted parameters are given by

g Tw uw x, -qQ — (3.3.9)
. 1 1 1 .

16 :1£3<



It is necessary to compute the effect of one arc's unadjusted
parameters on another arc's adjusted parameters. Thus f{rom
(3.26) the partial derivatives of ith arc adjusted parameters
(exclusive of orbital elements) with respect to the jth arc

unadjusted parameters are given by

38 . 3k

= -Q; (3.3.10)
. N,
j j

In a similar manner from equation (3.27) the partial derivatives
of the i-th arc orbital elements with respect to the un-

adjusted parameters are given by

dn. 3B.
Lo @ Tw. 3 )y ts Tw Jx. -8 —i
5 a, a. a i a b
Ya 1 i i 1 1 3y
i : i
ok }
- B —
ki ala (3.3.11)
i
an .- _ 0B
=L .., Tw,os ) e, Tw (B L
5 a. a. a b. k
la. 1 1 1 1 a_a 1
J J
3k
(3.3.12)
g,
da, i 28
L - (3, T N, B ) Lo, Tw Jx - By i
alk 1 1 1 1 1 3Ik
ok
- B —
k, 2y, (3.3.13)



4.0 PROPAGATION OF ERROR SENSITIVITIES

Various ORAN output displays require computation of

the effects of unadjusted parameter errors on the satellite

position and motion at some time other than epoch.

is given by

This

(4

where a, is the satellite positon and velocity at time t and

.1)

X, 1s the vector of adjusted parameters, including "the orbital

20

elements at epoch time.

The first term in (4.1) is due to
errors in the estimated epoch state and the second term is

due to the effect of the unadjusted parameters on propagation

of that epoch state to time t.

can be decomposed into a random component given by

X =
A—I‘

‘

and a systematic component due to

parameters given by

(BTWB)“

Ax_ = - (3Twe) "

S

Substituting from (4.2) and

gives

2a
Aa = ._;t_

3%,

(B

T

1 T

B We

1 ,T

B WKy

WB)

1

(4.3) into

oa da
Blwe + [ =t . =t
9y 850

(4.1),

(8TwB) "

errors in the unadjusted

this

1

BTk

The error in the epoch state

(4

(4

Y

.2)

.3)



The first term in (4.4) is the random error in a, due
to measurement noise. The second term in the systematic
error in a, is due to the unadjusted parameters .» These two

components are independent since

E(y ET) =0
agt oa
The partiail derivatives 5% and 3y are obtained through
0 X
integration of the appropriate variational equations as .

described in Section 5.

The sensitivity of 2. to the unadjusted parameters is

given by
Jda © da : da
—% =~ =t pTypy pTyg » 22t (4.5)
3y 850 Yy

of each element in 4, to each unadjusted parameter, The

total covariance matrix associated with a, is given by

N T
da ) oa -
E(AatAgtT) = | =% 8Tws) 13Ty E(e e!) £ 8Twp) 1Ty
- 3x "l ax
=0 =0
da da - a CES T -1 _T,.. T
== - = 3Twey ! BTwk| cov r|—= - =& 3Twr) ! 3Ty
3y 3x, 9y Xy
(4.6)
The first component of (4.6) is the noise only con-
tribution and the second component jis the unadjusted
bParameter contribution, To avoid excessive Computations,
ORAN computes only the diagonal elements of these covariance
matrices. For each element of a_ the Program computes the
~t . 22(

noise only sigma, the sigma due to unadjusted Parameters

and the total Sigma.
19 .—



SECTION 5.0
MEASUREMENT MODELING AND MEASUREMENT ERRORS

5.1 MEASUREMENT MODELING

In order to simulate a least squares data reduction
ORAN must compute partial derivatives of the measurements
with respect to both adjusted and unadjusted parameters.
The basic types of observation in ORAN are:

. right ascension and declination

) range

] range rats

° 2 and m direction cosines

° X and Y angles

° Azimuth and elevation

. Altimeter height

) Inter-Satellite Range and Range Rate

These measurements are geometric in nature. The
computed values for the observations are obtained by applying
geometric relationships to the computed values for the rela-
tive positions and velocities of the satelllte and the
observer at the desired time.

20
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5.1.1 Range and Range Rate

1

Range:

Consider the station-satellite véctor:

P = T - Toh | (5.1.1.1)
where ~

T is the satellite position vector (x,y,z) in

the geocentric Earth-fixed system, and

Tob is the station vector in the same system.

The magnitude‘of this vector, p, is the (slant)
range, which is one of the measurements,

Range rate:

The time rate of change of this vector p is

£ : - (5.1.1.2)

as the velocity of the observer in the Earth-fixed sys-
tem is zero. Let us consider that

b= pu (5.1.1.3)

where

A

u is the unit vector in the direction of D.

21



Thus we have

P = pu + pu (5.1.1.4)

The quantity p in the above equation is the computed value
for the range rate and is determined by

>

b = u . T (5.1.1.5)

The partial derivatives of range and range rate with
respect to the satellite position and velocity are given
below. All are in the geocentric, Earth-fixed system.

(The r, refer to the Earth-fixed components of T.)

Range:
ap CH -
I = — (5.1.1.6)
ari o}
Range rate:
3p 1, POy
st o ry - — (5.1.1.7)
i P p
0 N
—_ = — (5.1.1.8)
ar p

22
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The derivatives of range and range ratc with
respect to time are presented below. All arc in the
Earth-fixed system.

Range:

o= u-T (5.1.1.9)

Range Rate:

The range rate derivative deserves special atten-
tion. Remembering that

of
n
e

(5.1.1.10)
We write
b = U -p (5.1.1.11)
Thus
N | (5.1.1.12)

23



Because

Jhlll d ~ . ;\ * A
p = — (pu) = pu + pu
dt

we may substitute in Equation 4 above for a:

1 . N . -
p = — (p p-pu p) + u-p
p
or, as
p= u-.op

we may write

24

(5.1.1.13)

(5.1.1.14)

(5.1.1.15)

(5.1.1.16)



The gradient of this potential with respect to the Earth-
fixed position coordinates of the satellitc is the part of
p due to the geopotential:

U GM 3 a CZO 2 z
_— = - —3' 1l - ‘—~—2_- 5 sin ¢‘ 1-2 —— rl
ar. T 2r ‘ ri
(5.1.1.17)

We must add to this the effect of the rotation of the
coordinate system. (The Earth-fixed coordinate system
rotates with respecct to the true of date coordinates with
a rate ég’ the time rate of change'of the Greenwich hour
angle.)

The components of » are then

U

P - T [x cos 8, + y sin8,] 6, + 1) 0, (51.1.98)
1
- aU . . ; LB §5.1.1.19
Py = ;;— + [-Xx sin Bg *+ Yy CoOs eg] eg RS ] Gg (5.1.1.19)
2
. U 3u
o = — = (5.1.12.2M
3 .
arsh 9z

where x and y are the true of date satellite velocity

components.

25

28<



5.1.2 Altimeter Height

The altimeter height is unique in that the satellite
1s making the observation. While this is actually a
measurement from the satellite to the surface of the Earth,
it is taken to be a measurement of the spheroid height and
the time rate of change of that quantity for obvious
reasons. Using the formula for spheroid height determined
in Section 5.1 of the GEODYN Program Documentation Volume I,

) ‘ (5.1.2.1)

where

a, is the Earth's mean equatorial radius,
b is the Earth's flattening, and
z is Tz, the z component of the Earth-fixed

satellite vector.

26 29<



For error analysis purposes, the partial derivatives
of the altimeter measurement with respect to the satellite
position, velocity, and time are needed. These are derived

directly from the analytical expression for HALT'

(5.1.2.2)
-6a £ (=) [ X |5 -
€ ar T
r
The time derivative of altimeter range is given by
dH oH oH
; ALT ALT ALT
Hapr = Tt Tyt T3 (5.1.2.3)
arl arz 3r3

The altimeter measurement is actually made to the
geoid surface instead of the spheroid surface. A detailed
geoid is necessary, however, to model the altimeter measure-
ments to properly exploit their full accuracy.

27 30<



§5.1.3 Right Ascension and Declination

The topocentric

right ascension o and declination

§ are inertial coordinate system measurements as illus-

trated in Figure 4,1,

ORAN computes these angles from the

components of the Earth-fixed station-satellite vector

and the Greenwich hour angle eg.

(5.1.3.1)

(5.1.3.2)

The partial derivatives of these measurements with respect
to the Earth-fixed satellite position vector T are given by

Right Ascension:

3o ay)

ar. /EI?:;;j- (5.1.3.3)
Ja ) Py

arz /g;yrng (5.1.3.4)
1)

oty 0 (5.1.3.5)

28
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Figure 5.1, Topocentric right ascension & declination angles
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Declination:

84 TP oP3
— = - (5.1.3.6)
T 2T
1 2
38 Py P3
— = 5.1.3.7
31 T3 ( 5:7)
2 Pl *P,

— s — (5.1.3.8)

The time derivatives are given by

ul 1‘2 -UZ I‘l

Right ascension: a =

2 .1.3.9
o (1-uf) (5.1.3.9)
. r:- P Uq
Declination: § = —_T:::%F; (5.1.3.10)
p l-u3 .

where the unit vector u is defined as

ol
I
'"ol

ol

29 A
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5.1.4 Direction Cosines

There are three direction cosines associated with
the station-satellite vector in the topocentric system.

Description of these measurements requires the N, Z, and E
(north, zenith and east baseline unit vectors which describe

the tropocentric system along with the u). The direction

cosines are computed as:

L o= u . E (5.1.4.1)
m = u . N (5.1.4.2)
n=u . z - (5.1.4.3)

The 2 and m direction cosines are observation types for

ORAN,

The partial derivatives of the direction cosines with

respect to the satellite position vector are given by

oL 1 _

_— = - E. - gu.

ar 5 [ i IJ (5.1.4.4)
i

am 1 ( ] ,

.S — UN. - mu. (5.1.4.5)

1 1 ¢

Ty e | J

an 1 ‘

R = — Z. - nu. 5.1.4.6
i

30
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where

Ei = component of E in the
Ni = component of N in the
Zi = component of Z in the

The time derivatives of the £ and

given by
. p * E-2p
Q‘ =
p
. p * N-mp
m:
P

31

T, direction
r, direction

T, direction

m direction cosines are

(5.1.4.7)

(5.1.4.8)
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5.1.5 x and y Angles

The x and y angles, as illustrated in Figure 5.2, are

computed in a tropocentric coordinate system as

(5.1.5.

(5.1.5.

The derivatives of the x and y angles with respect to the

satellite position vector are

aXa nEi-ILZi

2
AT p(1-m")
Ya _ Ni-mui
ary 0v/1-m2

a o (l-mz)
. p * N-mp
Ya= ’ >

o Y1-m
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5.1.6 Azimuth and Elevation

Figure 5.3 illustrates the measurcment of azimuth
and elevation. These angles are computed in the topo-
centric coordinate system as

-1 L
A, = tan " - (5.1.6.1)
m
= . o-1
EQ = sin “(n) (5.1.6.2)

The partial derivatives with respect to the satellite
position vector are given by

aAZ i mEi—JLNi
. VI (5.1.6.3)
or, P/1-n |
3E Z.-pu.
. 4 (5.1.6.4)
r. p(1l-n")
i
and the partial derivatives with respect to time are
Ae P (mE-2N) (5.1.6.5)
z
o (1-m%)
po P (5.1.6.6)
2
p /l-m2
38<
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5.1.7 Satellite-Satellite Range and Range Rate

The range measurement from one satellite to another

1s computed as follows.

Let fl be the inertial coordinates of the transmit-
ting satellite and fz the inertial coordinates of the receiving
satellite. Then the range (or distance) between the two

satellites is given by

Ri/(a -X) - (X -%) . (5.1.7.1)

2 1

The time rate of change of range, or just range rate, is cal-
culated by differentiating (1) with respect to time:

Y Y iy e

(Xz ] X1) (Xz ] Xl)

R = R (5.1.7.2)

ORAN can also simulate relay range and range rate measurements.
Relay range is simply the sum of two range measurements: the
range from some transmitting station to a satellite plus the
range from that same satellite to another satellite. This
configuration is given in Figure 5.4. Thus, according to the
notation in Figure 5.4, the relay range is defined as

(5.1.7.3)

R
2

+

R =,§
Relay
R

+ R

1 2

Likewise, the relay range rate is the time derivation of
(3), or

R =R +R . (5.1.7.4)
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Since the partial derivative of a sum is equal to the

sum of the individual partial derivatives, any partial
derivative of RRelay or éRelay can be found by summing
the individual partials of the two quantities in the

sum. Specifically, if one wants the partial with respect
to some parameter o, then

aR

relay _ 1L, 2 (5.1.7.5)
a0 30 oo ?
3R 3R 3R
rela
— Y = T o (5.1.7.6)
35
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5.2 MEASUREMENT ERRORS

This section discusses the individual measurement
error sources and the mathematics used to model them in
ORAN. Table 5.1 1lists all measurement error sources and
the associated error parameters.

5.2.1 Bias

Bias errors are considered as constants which must
be added on to the computed value in order to better repre-
sent the observed. Therefore,

= 1
Zc, ZC + b (5.2.1.1)
where
ZC s the computed measurement corrected for
any biases
Zé is the computed measurement based only on
satellite geometry
b is the bias
Thus
azc
Y 1 for all measurement types. (5.2.1.2)
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5.2.2 Timing

Should the time tag of the measurement be incorrect,
then a correction to this time tag is called a correction
to timing. Any error in this correction can be found by
computing the partial derivative of the computed measurement
and multiplying by the time error, or

aZ

C
s At = AZ .
5T Crim (5.2.2.1)

where At is the timing error, but

BZC BZC 3

—¢ - ‘¢, ar
ot 3T t
I
3T T (5.2.2.2)
where
T i1s the satellite position vector
% is the satellite velocity vector.
Thus
oL .
AZ = —< .7 at
Tim T (5.2.2.3)
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5.2.3 Transit Time

The time tag assigned to the measurement is usually
the time at which the station receives the signal. But the
satellite retransmitted the signal to the receciving station
at some earlier time. Therefore, two times are involved.
To simplify matters somewhat, the observed measurements
usually have been corrected so the computation process of
the computed values can assume the satellite and station at
the same time. An error in this transit time correction is
similar to the timing error just discussed, but now the
Systematic error is some fractional part of the estimated

transit time, i.e.,

. - C';
AZ = — r AT (5.2.3.1)

Ctransit time oTr

where AT is the error in the transit time. If p is the
fractional error in transit time correction, then

AT = p(%) (5.2.3.2)

where

R is range

C is speed of light
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5.2.4 STATION LOCATIONS

In the preceding sections measurement equations have
been developed for a relative satellite-station geometry.
These measurements are used to determine satellite position
and motion in an inertial coordinate system at some epoch
time. In transforming from the relative coordinate system
at the time of measurement to the inertial system at epoch
we must account for both the movement of the satellite and
the movement of the station in inertial coordinates during
the time period between measurement and epoch. The equations
of motion for the satellite are given in Sections 5 and 6.
The station movement is due to the movement of the Earth
(considered as a solid body) and to the movement of the
Earth's crust relative to the central mass. Station co-
ordinates are referenced to a particular epoch time (usually
1900.0) and the movement of the station since this time
is included in the computation of a station-satellite
measurement. The solid body component of station motion
is due to the Earth's rotation, nutation and precession.
These are very well known and make negligible contributions

to station location error.

The effect of an error in station location on the com-

puted measurement can be determined by the following expression

9L
Z = - & . AT (5.2.4.1)
o —
STA 5T STA
where
AL is the error in the computed measurement due to
o
STA an error in station position
T is the satellite position vector
A?STA is the error in station position (in same

coordinate system as r)
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This is obvious if one considers, for example, a range
measurement from a station to a satellite. If the station
height were raised, the same effect on the measurement
would occur if the satellite height were lowered.

At any measurement time the total station location

€rror can be expressed as

+ AT+ AT, + AT + AT (5.2.4.2)

ATgrp= 4Tg E SE oL p

where the components are defined as

A?S = Survey error. This is the error in a station's
location relative to the local datum. Each
station on the same local datum will have a

different value of A?S.

AT, = station location error due to uncertainty in
location of the local datum with respect to
the center of mass of the Earth. All stations
on theAsame local datum will have the same

ArEf

The remaining components are due to uncertainties in the
movement of the Earth's Crust relative to the centra] mass.,

These are:

40
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e
I

AT =
p

error due to solid Earth tidal displacements,

This 1is relatively a local error.

error due to ocean loading displacement. This
is also a relatively local error which depends
upon the distance of the station from the

shoreline.
error due to polar motion

The equations for these last three components are developed

in the following sections.

5.2.5 Polar Motion

The changes in station longitude and latitude due to

polar motion are defined as

AN =2 - A = i -
o . (Xp51nAm chosxm) tan ¢m (SEC ARC()

A¢

where

subscripts c and 0 denote computed and observed values

*m - 9, =-(Xjcosa, + Yy sina) (SEC ARC)

respectively, and

X, Y
P’ P

are angular variations (seconds of arc) in the

position of the Earth's axis of rotation relative to

values

-k

The change in longitude, AX, can be related to UT1 by the

equation

41
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Errors in station position due to polar motion are
represented by uncertainties in Xp and Yp’ and are obtained
in the form

37 32 3AN  3Z_ 3A¢
R + < (5.2.5.3)

X 3AN X 3A¢ 3X
p p

9z 37 . 3AN  9Z_ 349
€= _C + < (5.2.5.4)
aY 3AN 3Y 3rG Y
P P ¢

where ZC is the computed measurement.

5.2.6 Solid Earth Tidal Displacements

Let the total displacement of a station on the surface
of the Earth due to the solid Earth tide be expressed in
spherical coordinates (r,8,X):

42
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where 6 is the co-latitude and A if the east longitude.
this coordinate System the gradient operator is:

Aa Ala A 1 3
v} = r —— + f  — + A —
ar r 38 T sin 8 3\

Let

l\l 3 A '1 3
= 6—-—+}\\_
r 238 r sin 6 3

Then (Diamante and Williamson, 1972):

N = == T V.U + = T
T g h T2 g T,
Rzr ~ aUT2 h2
= VUT - T + = U
g 2 or g

where h2 and 22 are tbe Love numbers of the second and third

kind.
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Using

d .2 ( 2
U.,. = = T 3 (Ryer) ™ - 1) :
r, 3 Ré d (5.2.6.6)
_ GMdr2 A h, A ag
NT = — JRZ(Rd-r) Rd + |3 (—— - 12) (Rd-r)
Rd g 2
Jl2;
2 . (5,2.6.7)
GM,
Using g = ——; and r=re, the local value of the Earth's radius,

r

4
M, r 5 A A A
- € . ; >
Mo = (ﬁ— §3_>({322 (Ry r)] Ry (5.2.6.8)
T=T e ' d
e

h A A h ~
) e 25

2 2

acts as a measurement error by introducing a time

variation in the position of any station on the Earth's
surface. Typically, NTr is on the order of 0.5 meters,

-7
while the tilt d&' is on the order of 10 ° seconds of arc
which is equivalent to horizontal displacements Nty 0.36

meters. Values of hy and , are found in the range:
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0.587

A
jon
A
o
(o)
—
o

(5.2.6.9)
0.068 < 2

A
©
o.
o
oo

Again, there are two contributions (5.2.6.8) from the
combined effects of the Sun and Moon:

Np = Np + N, (5.2.6.10)

where NT and NT are obtained from (5.2.6.8) replacing the
m s
subscript "d" with "m" and s, respectively.



5.2.7 Ocean Loading Displacements

Many of the currently active satellite tracking stations
are on or near the coast. The tidal motions in the great
bodies of water covering 70 percent of the surface of the
Earth are now known to produce fluctuations in the observations

of the solid Earth tidal effects. These oceanic perturbations
account for about 10% of the observed gravity tide, 25% of

the observed strain tide and 90% of the observed tilt tide at

the Earth's surface near Ccoastlines (Diamante and Williamson, 1972)
principal ocean tide contribution to the observed surface

gravity, strain and tilt is mainly a result of the deflection

of the surface of the Earth under the oceanic loading. It

is precisely this contribution to the strain tide (and hence
station position) that is of importance in satellite opera-

tions.

Unfortunately, difficulties arise in developing useful
ocean loading models of the strain tide due to:

(1) The theory of the ocean tides themselves is

generally deficient. Complications arise from

the fact that the oceans do not cover the entire
surface of the planet and the depth of the oceans
varies considerably.

(2) Observational data are limited. The state of

the tides in the great open oceans is virtually
unknown. The regions inland to about 400-500 km
from continental coast-lines are dominated by
the influence of local and regional tides. At
about the 400 km distance from the shoreline,

46
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regional tides provide about an equal contri-
bution to the variations in the solid Earth tide
as do the open oceans. However, further inland
the open oceans provide the dominant contribu-
tion, The ocean loading effect, however, drops
off as the distance from the shore, L, in-
creases.

(3) Additional complications arise even where data

are available. Even in the case of isolated
islands, observations have been found to
correlate with the tides of some more distant
region, rather than with the immediate regional
tide. Furthermore, the most frequently avail-
able and reliable observational data of the
fluctuations in the solid Earth tide have been
made with gravimeters.

In view of these difficulties, we have developed a
semi-empirical error model for station position which will
incorporate available observational data. These observational
data are malnly in the form of variations in the vertical
compcnent of the surface gravity which are translated into
a model of the vertical strain variation, acceptable for
error analysis applications. The horizontal components of
the strain are neglected, being of secondary importance in
any case. Kuo, et. al. (1970) have made measurements of the
fluctuations in the M2 and O1 gravity tide constituents.
However, the M2 measurements are generally better and pro-
vide better agreement with numerical models. Farrell (1970)
provides some data on MZ’ 01, SZKZ’ and lel gravity measure-
ments, but the M2 measurements are the most prevalent.
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Gravimetric measurements are generally presented as a
fraction of the theoretical solid earth Mz tides:

2Ury

’ (5.2.7.1)
T -r

=

Assuming the value of the gravimetric factor 3

3
60 = (l - E k2 + hz.) = 1.16 s (5.2.7.2)

and zero phase k., The result is normalized by the theoretical
value of the MZ solid earth tide on 3 rigid earth:

(5.2.7.3)
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The measurements provide an amplitude

AT (Fe)

in terms of a percent of § with a time dependence in terms
of a phase angle

K(Fe) in degrees.

AT and k are indicated as functions of the local position on
the surface of the Earth, ?é.

Kuo et. al. (1970) and Kuo and Jéchens (1970) made a
series of long-term grévimetric measurements across the con-
tinental United States. All of the stations used in that
study were within T 17 of the 40" paraiiel of latitude. In
employing these results, we will refer all distances from
the coast-lines to the 40° parallel. Given the geographical
makeup of the United States, we can expect their results to
apply reasonably well for any U.S. station position in the
latitude range:

35° North < ¢ < 50° North.

Using the stations nearest to the shore:

40°49,0'N
New York
73°58.0'W
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and

38°54.3'N
Point Arena, California
123°42.4'W

as the Atlantic coast origin and Pacific coast origins (L=0),
respectively, the results of Kuo, et. al. for the Mz-tide
(shown graphically in Figure 5.5) have been reduced to tabular
form (Table 5.2)1. Distances are measured aldng the 40°
parallel. line from the Atlantic and Pacific coasts. Addi-
tional values of the measured gravimetric factors AS and phase
k for the M, and Ol tides have been given by Farrell (1970)

for a number of isolated stations, including:

M, tide: A§ = 1,249, k= 5,2°
Bermuda { _

01 tide: A§ = 1.198, k = 0,3°

M, tide: AT = 1,100, ¥ = -2.0°
Honolulu { _

Ol tide: A8 = 1.181, v = 6.,1°

Kuo et. al. have also made corresponding measurements for the
%
shown graphically in Figure 5.6, do not agree as well with

tidal effects across the United States. These results,

the numerical model calculations as do their Mz tidal measure-

ments, however.

x 100 (in percent).
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Values

United
and wi

of A§(L) and k(L) the M,-tide for the Continental
Stated Referred to the 40° p

th New York City
Values (1.=0) and

TABLE 5.2

- Parallel of Latitude
as the Origin for Atlantic Coast

_ Point Arena as the Origin
for Pacific Coast Values (L=0Q) #=%*

Distance Distance
From Pac. From Atl. AT K
Coast(km) Coas t(km) % Degrees
1 ~ 0 4242 -3.560 3.87
2 202 4040 -0.925 3.21
3 404 3838 0.150 2.54
4 606 3636 0.308 1.94
5 808 3434 0.385 1.51
6 1010 3232 0.423 1.21
7 1212 - 3030 0.308 0.968
8 1414 2828 0.270 0.8438
9 1616 2626 0.193 0.786
i% 181§ 2424 0.16¢0 0.785
11 2020 2222 0.150 0.725
12 2222 2020 0.150 0.725
13 2424 1818 . 0.160  0.725
14 2626 1616 0.231 0.725
15 2828 1414 0.308 0.725
16 3030 1212 0.463 0.725
17 3232 1010 0.655 0.755
18 3434 808 1.000 0.847
19 3636 606 1.385  1.09
20 3838 404 2.159 1.45
21 4040 202 3.159 2,18
22 4242 ~ 0 4.540 3.45
k%
Reduced From Kuo et. al., 1970
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TABLE 5.3

Values of AT(L) and x(L) the Mz-tide for the Continental
United Stated Referrcd to the 40° Parallel of Latitude
and with New York City as the Origin for Atlantic Coast
Values (L=0) and Point Arcna as the Origin
for Pacific Coast Values (L=0)*#%%*

Distance Distance
From Pac. From Atl. AT K
Coast(km) Coast(km) % Degrees
1 .0 4242 -3.560  3.87
2 202 4040 -0.925  3.21
3 404 3838 0.150 2.54
4 606 3636 - - 0.308 1.94
5 808 3434 0.385 1.51
6 1010 3232 0.423 1.21
7 1212 - 3030 0.308 0.968
8 1414 2828 0.270 0.848
9 1616 2626 0.193 0.786
15 1818 2424 0.160  0.75S
11 2020 2222 0.150 0.725
12 2222 2020 0.150 0.725
13 2424 1818 0.160 0.725
14 2626 1616 0.231 0.725
15 2828 1414 0.308 0.725
16 3030 1212 0.463 0.725
17 3232 1010 0.655 0.755
18 3434 808 1.000 0.847
19 3636 - 606 1.385 1.09
20 3838 404 2.159  1.45
21 4040 202 3.159 2.18
22 4242 -0 4.540  3.45

%

x
Reducced From Kuo et. al., 1970.
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To good approximation the tidal potential for the M

2
lunar tidal component (principal lunar semi-diurnal tide) is

(Diamante and Williamson, 1972):

D

™

<
]
=~ | W

2
Mm T 2 2
E-_ E— cos“$ cos 6m cos 2t (5.2.7.4)
m m

where ¢ is the geocentric latitude of the station, t is the
hour angle of the Moon and Gm is the lunar declination.

d
m
is the mean distance of the Moon.

Let N be a unit vector
along the north polar axis of the Earth, then:

36M 7\ o N
UTM - — — 2[(N-r)(N-Rm) - Rm~r]
: 2 4 4 d
m m
R NP (5.2.7.5)
- {l-km nm) JLL- T Jj .

Similarly, to good approximation the Ol tidal constituent
(principal lunar diurnal tide is:

- 3 GM rzdm3
UTO = . Z m (__)<__> sin 2¢ sin 26m cos t (5.2.7.6)
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or

GM_ /r 2 d S0 .. 2 an g A A
Urg =-3-——(—J (;) {mqq(NmM -(N-T) (N-R_) (R_-T)( -

(5.2.7.7)

The measurements of Kuo et. al., (1970) and other

investigators are of the form:

-2U. §
;S0 _ )4 ( T (5.2.7.8)
Er 100 r ’

T.* Equating (4) and (8)
the solid Earth surface displacement in tﬁe radial direction is
given by

s U
50 4 (88 o'T, .
Tr 3\100/ ¢ _ (5.2.7.9)
T re

for specific lunar tidal components of U

In terms of the contributions of the M2 and 0, tidal effects

_ 1
(Diamante and Williamson, 1972):

SO . .SO S0
Npp ¥ Npp @)+ Npp (04)
4 5 x 1077 ) 5000 © J)
=)0 AS(M.) Uny, + o,
0
; o, 2) Uy, 1) Pro, |
T = r-e
(5.2.7.10)
Ed<
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or

SO ~ SO . SO .
Npp(L) % N (My;L) + Noo (0g;L) ’ (5.2.7.11)
3
R M
SO . _ TA 2 = . e m
NTr(MZ,L) = 1,16x10 AS (MZ,L) (——) <——) Re
d M
m e
{2[(N-r)(N-R;;) - (RE:1)] - [1-(N~R,§)21[1-(N-r>21} ,(5.2.7.12)
3
R M
SO . _ -2 . e m
NTr(Ol,L) = 1.16x10 AE(OI,L) (E—> (;—) Re
: m e’
{4(N'I‘)(N'R§“*)[(RI’;*’I‘) - (N'I’)(N'RI’;I")]} 3 (5.2.7_13)

is the distance from the shoreline and

ot

he local phase

i
(L) has been taken into account by the relations:

A?‘: = 5 M - R i ;
(Rm)x (Rm)x cos k (M,;L) (R)) sin k (M,;5L) (5.2.7.14)
: y
(RE) = (R cos k (My5L) + (R sinx (My;L) ,  (5.2.7.15)
y .y X |
A:’:'}: = > . . - 2 4 .
(Rm )x (Rm)x.cos K (Ol,L) (Rm)y sin x (Ol,L) , (5.2.7.16)
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A'.:‘: = o . o 3 . 7
(R; )y (Rm)y COS K (Ol,L) + (Rm]x sin « (Ol,L) , (5.2.7.17)

(RE) = (RE%) = (R ) . (5.2.7.18)
Z A

For most error analysis applications, however, the phase lag
can be assumed equal to zero and the O1 component {(equation
3.28) may be neglected. In any case, the O1 component can gen-

erally be neglected for stations within the latitude band:

-40° < ¢ < 40° .

In ORAN the O1 component is neglected. The values of
k and A8 are computed by fitting a polynomial in L to
the curves of Figure 4.5. Then Equations 12, 14, 15
and 18 are used to compute the change in station height.

6b<
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5.2.8 Measurement Errors Due to Medium Distortion

In ORAN uncertainties in range and range rate due to

the following transmission medium effects are treated.

) Tropospheric refraction
. Ionospheric refraction
° Space plasma

These are discussed in detail in the following sections.

5.2.9 Errors in Tropospheric Refraction

Except at very low elevation angles, (<5°), the primary
effect of the troposphére,is a decrease in the velocity of
propagation. At the Earth's surface, this decrease is about
300 parts per million, decreasing to about 1 part per million
at a height of 30 km. Considering the Earth's atmosphere to
be horizontally stratified, as is almost always done in data
reduction, a good approximétion to the integrated tropospheric

effect on range measurements 1s

2.77(N_/328.5)

T 026 + sin E

where

= R + AR

RoBsErRVED = RcOMPUTED T

Ns is the deviation of surface index of refraction

from unity in parts per million, and

E 1is the elevation angle.
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The most serious error in applying this correction
to data is due to errors in the surface index of refraction
at the tracking site. For this reason, tropospheric refrac-
tion errors are modeled in ORAN as

3 (AR (2.77/328.5) (5.2.9.2)

T)

aNS .026 + sin E

The systematic effect of tropospheric refraction on
range rate errors is obtained by differentiating the range
error with respect to time,

a(AéT) (-2.77/328.5) .
= > COS E E (5.2.9.3)

BNS (.026 + sin E)

Elevation:

For elevation observations, the partial with respect

to refraction is

9E  _ | 10° (5.2.9.4)
3N_ T 16.74%¥930 tan E

Azimuth is not affected by refraction.

Direction Cosines:

98 = -sin A_ sin E BE 5.2.9.5
2t . 3 ( )
s s
am  _ . JoE
3m T ~cos AZ sin E by | (5.2.9.6)
S s
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X and Y angles:

3% sin AZ

- 3E
o = — (5.2.9.7)
ong (sin® E + sin? A, cos? E) ong
3y cos A sin E
= = - zZ_. 3E (5.2.9.8)
ns an
jri - cos? A, cos? E S

5.2.10 Errors in Ionospheric Refraction

The effect of the ionosphere on a range measurement
is evaluated by considering

R

‘0BSERVED ~ RcompuTep * AR

I

The correction ARI is modeled by fitting a polynomial to the
curves in Figure 4.6, which were taken from JPL SPS 37-41,
Volume III, page 8. The polynomial takes the form
2 3
+ C, SINE + C, SIN“E + C, SIN'E (5.2.10.1)

ARp = Cy + Cy 2 3

I

where E is the elevation angle and the C; are obtained by a
least squares fit to selected points from the curves. Errors

in range rate are obtained by differentiating ARI'

€9<
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An estimate of the error in ARI is given by the above

reference to be 10% on a day-to-day basis for a particular
location. '

RANGE CORRECTION ARI(M)

DAY TIME, HIGH
SUNSPOT INDEX

-
-

7

- . 7

NIGHT TIME, ST '
LOW SUNSPOT RSSO
INDEX
.}“

10 20 30 40 50 60 70 80 90
ELEVATION, deg

Figure 5.7 Effects of Ionosphere
on Range Measurements DSIF S-band
' System (f = 2.3 x 109 Hz)
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5.2.11 Errors in Space Plasma

Space plasma represents another type of propagation
error. Unlike the ionosphere, which is assumed to terminate
somewhere near 600 KM above the Earth's surface, space plasma
continues ad-infinitum, and is reasonably represented by
a 1/r2 law. Therefore, no closed-form solution exists for
its effect on measurements, and an integration process must

be performed. Let

R + AR

OBSERVED RCOMPUTED SP

where ARg, is modeled by the relationship

44.3
= 5.2.11.1
and
f = frequency of wave (Hz)
Np = proton density per cubic centimeter
s = ray path
58 4 1<



N

Figure 5.7, which was taken from the JPL SPS 37-41,
Vol. III, page 6, gives the assumed proton density repre-

sentation as a function of the distance from the sun.

20

.-

L}

- PROTONS/CM>
~

P
N

LOG10 R km

Figure 5.7 Logarithmic Plot of
Proton Density and Flux vs Distance from the Sun

The proton density was taken to be

N, = Allog R] + B

h

which was converted into a st degree polynomial

_ . . 52 3
Np = KO + th + hZR + K3R + K

4
4R
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The cocfficients K; werc obtained by a least squares fit to

selected points from Figure S5.7.

The integration process is numerical (Simpsons Rule)
in which the total ray path is divided in half. This
halving process is necessory becausc of the possible situa-
tion shown in Figure 5.8 1in which the proton density
curve along the ray path would be bell shaped (Figure 5.9)

SATELLITE.
T
ant 22
o)
SUN
O
EARTH

Figure 5.8 Earth-Sun-Satellite Configuration

which Requires Halving the Ray Path
to Accurately Represent Proton Density
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PROTON DENSITY

; | }
RTH SUN . SATELLITE

i
!
i
A

E

RAY PATH (One Way)

Figure 5.9. Proton Density Corresponding
to Figure 5.8

Figure 5.9 shows that a quadrature expression which does
not consider an intermediate value of the proton density on
the ray path would give a totally erroneous density repre-

sentation.
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SECTION 6.0
FORCE MODEL AND VARIATIONAL LEQUATIONS

A fundamental part of the ORAN Program requires
computing positions and velocities of the spacecraft at each
observation time. The dynamics of the situation are expressed
by the equations of motion, which provide a relationship be-
tween the orbital elements at any given instant and the
initial conditions of epoch. There is an additional re-
quirement for variational partials, which are the partial
derivatives of the instantaneous orbital elements with
respect to the parameters at epoch. These partials are
generated using the variational equations, which are

analogous to the equations of motion.

6.1 EQUATIONS OF MOTION

In a geocentric inertial rectangular coordinate
system, the equations of motion for a spacecraft are of

the form
= uT -
r = - —= * A (6.1.1)
T
where
T is the position vector of the satellite.
U is the GM, where G is the gravitational constant
and M is the mass of the Earth.
A is the acceleration caused by the asphericity of

the Earth, extraterrestrial gravitational forces,

atmospheric drag, and solar radiation.
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This provides a system of second order equations
which, given the epoch position and velocity components,
may be integrated to obtain the position and velocity
at any other time. This direct integration'of these
accelerations in Cartesian coordinates is known as Cowell's
method and is the technique used in ORAN's orbit generator.
This method was selected for its simplicity and its capacity
for easily incorporating additional perturbative forces.

There is an alternative way of expressing the above
equations of motion:

il
]
<
[
+
T
+
=]

5 R (6.1.2)

where
U is the potential field due to gravity,
Kb contains the accelerations due to drag, and

Kk contains the accelerations due to solar
radiation pressure.

This is, of course, just a regrouping of terms coupled
with a recognition of the existence of a potential field.
This is the form used in ORAN.

The inértial coordinate system in which these equations
of motion are integrated in ORAN is that system corresponding
to the true of date system of the epoch time. The complete
definitions for these coordinate systems (and the Earth-
fixed system) are presented in the GEODYN Program Documen-
tation, Volume 1, Section 3.0.
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The evaluation of the accelerations for % is per-
formed in the true of date system. Thus there is a require-
ment that the inertial position and velocity output from the
integrator be transformed to the true of date system for the
evaluation of the accelerations, and a requirement to trans-
form the computed accelerations from the true of date system
to the inertial system.

6.2 THE VARIATIONAL EQUATIONS

The variational equations have the same relationship
to the variational partials as the satellite position vector

does to the equations of motion. The variational partials
ax (t)

3B (t,)

position and velocity of the satellite at a given time; i.e.,

are defined as the .where X(t) spans the true of date

X(t) = X,y,2,X,¥,2

and E(to) spans the epoch parameters; i.e.,

X5sY g2, the satellite position vector at epoch

io’yo’zo the satellite velocity vector at epoch

CD the satellite drag factor

CR - the satellite emissivity factor

Cnm’ nm gravitational harmonic coefficients for
each n, m pair

X surface density coefficients



GM Earth gravitational constant

Ag lumped effect of gravitational model dif-
ferences. The differences between several
built-in gravity models may be propagated
as a single parameter which approximates
errors in low degree and order models.
Logically, this parameter should never
be considered adjusted.

Yp ratio of Earth reflected radiation to
incoming solar flux

GMs Sun gravitational constant

GMm Moon gravitational constant

KZ Lofe Numbér

Also, the ORAN program can treat the perturbations in
the Earth gravitational field due to mascon of mass m at an
arbitrary location in the Earth.

Let us first realize that the variational partials
may be partitioned according to the satellite position and
velocity vectors at the given time. Thus the required
partials are

3T(t) 3T (t)

2B(t,)  9B(t,)
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where

T(t) is the satellite position vector (x,y,z)
in the true of date system, and

r(t) is the satellite velocity vector (i,;,é)
in the same system.
The first of these, EELEL—
. . aB(t,)
integration of 0

can be obtained by the double

3T (t)
—_ (6.2.1)
3
B(to)
or rathe:, since the order of differentiation may be
exchanged,
2 -
3 ar (t
— __E_l_ (6.2.2)
at aB(ty)
Note that the second set of partials, 3;____ may be obtained
- 3B(tg)
by a first order integration of QELEL_‘ Hence we recognize

BB(to)af(t)

that the quantity to be integrated is ——.
3B (to)

form given for the equations of motion in the previous

Using the first

subsection, the variational equations are given by
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5T (t) 3

3B(ty)  9B(t,)
where

U(t) is the potential field due to gravitational
effects at time t.

Kk(t) is the acceleration due to radiation pressure
at time t.

Kb(t) is the acceleration due to drag at time t.

The similarity to the equations of motion is now obvious.

When the app priate partial derivatives are computed,
Equation (6.2.3) is of the form

_ [éU(t) + Rp(t) + Ky(t) (6.2.3)

Y(£) = A(t) y(t) + B(t) F(t) + C(t) (6.2.4)
where
T(t)
A(t) = —
ar(t)
3T (t)
B(t) = ——o
ar(t)
67
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3T (1)

C(t) —_—
' aﬁ(to)

aT(t)

y(t) _—
BB(tO)

3T (1)

3B (t,)

li

y(t)

This is a linear differential equation with coefficients A(t),
B(t) and C(t) which are known functions of time. 1In ORAN a
Cowell predictor-corrector integrator is used to compute T(t),
%(t) and the coefficients A(t), B(t) and C(t). Then an Adams-
Cowell corrector only integrator uses these coefficients to
solve the variational equations (6.2.4) for ?tt) and ?(t).
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SECTION 7.0
FORCE MODEL COMPONENTS

Equation (6.1.1) expresses the instantaneous satellite
acceleration as the sum of individual acceleration due to
the gravitational field, atmospheric drag, and solar radiation
Pressure. This section describes how each of these accelera-
tions and the associated variational equations corresponding
to Equation (6.2.4) are evaluated. Table 6.1 lists the con-
tributions to each of these acceleration components and
the associated error parameters.,
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THE EARTH'

S POTENTIAL
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Figure

7.

1

Spherical

7/

Coordinates
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7.1.1 Spherical Harmonic Expansion

The Earth's potential is most conveniently expressed
in a spherical coordinate system as is shown in Figure 7.1.
By inspection:

° ¢', the geocentric latitude, is the angle
measured from OA, the projection of OP in
the X-Y plane, to the vector OP.

° A, the east longitude, is the angle measured
from the positive direction of the X axis
to OK.

° r is the magnitude of the vector OP.

Let us consider the point P to be the satellite
position. Thus, OP is the geocentric Earth-fixed satellite
vector corresponding to T, the true of date satellite
vector, whose components are (x,y,z). The relationship
between the spherical coordinates (Earth-fixed) and the
satellite position coordinates (true of date) is then

given by

L]
"
~
[\
+
\<
N
+
N
N

(7.1.1)
_1 2
¢' = Sin' —_ (7.1.2)
T
-1 7
A = tan ~ -8 (7.1.3)
x g

71 A4
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where eg is the rotation angle between the true of date
system and the Earth-fixed system (see GEODYN Program Docu-
mentation, Volume 1, Section 3.4).

The Earth's gravity field is represented by the
normal potential of an ellipsoid of revolution and small
irregular variations, expressed by a sum of spherical
harmonics. This formulation, used in ORAN is

nmax n

_ GM
TR P
n=2

m=0

a_\n
e m . '
(?_) Pn (51n ¢j [C COS mA + Snm sin mA] j

7.1.4
where ( )

G is the universal gravitational constant,
M is the mass of the Earth,
T is the geocentric satellite distance,

nmax is the upper limit for the summation (highest

degree),
ae is the Earth's mean equatorial radius,
¢ is the satellite geocentric latitude,

A is the satellite east longitude,

Pﬁ(sin¢) indicate the associated Legendre functions,

and

Cnm and Snm are the denormalized gravitational coefficients.

86<
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The gravitational accelerations in true of date co-
ordinates (X,¥,Z) are computed from the geopotential,
U(r,¢,\), by the chain rule; e.g.,

U  or aU 3¢ aU 23X
X = — —_ e —— e 4 e ’ (7-1.5)

ar 9x a¢ 93X 3x 33X

The accelerations y and z are determined likewise. The

partial derivatives of U with respect to r, ¢', and A are
given by

nmax
U GM [ : a \n -z—nw
;; = ;7 1+ 127 )3 [Cnm COS m) (7.1.6)
v [ n=2"" m=0

- m . 1
+ Snm sin mk) (n + 1) Pn (sin ¢)

5U oy Pmax aen n .
;): = .r_ Z (r_ Z (S, cos mi - Cqm Sin mi) (7.1.7)
n=2 m=0
m .
m P, (sin )
- Gy Mmax .n - n
— = — Z (_j Z (C,. cos mh + S__ sin m\) (7.1.8)

[Pg+l (sin ¢) - m tan ¢'P2 (sin ¢)

87<
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The partial derivatives of r, ¢ and X with respect to
the true of date satellite position components are

Lr = r_l_ :
ar. T (7.1.9)

1 .
¢ 1 r 2 9z
— 32 ——— - +

2

or. 2.2 r ar.

1 X +y i 1 (7.1.10)

[
A 1 oy y 9x .
. e - T (7.1.11)
ari Koy ari X ari
75
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The Legendre

functions are computed via recursion

formulae:
Zonals: m=0
o 1 0
. _ . 1 :
P. (sin ¢) = - (2n-1) sin ¢' Py (sin ¢) - (7.1.12)
o} .
(n-1) Pn-Z (sin ¢"
pi (sin ¢) = sin ¢' (7.1.13)
Tesserals: m#0 and m<n
m - - ph . _ r pm-1 .
Pn (sin ¢") = Pn_2 (sin ¢ + (2n-1) cos ¢ PL_] (sin ¢V
(7.1.14)
1 . =
P] (sin ¢") = cos ¢' (7.1.15)
Sectorals: m=n
Pt = (2n-1) cos ¢'Pn-1 (sin ¢9
" n-1 (7.1.16)
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The derivative relationship is given by

d
_ pz (sin ¢') =P
d¢'

m+1

. 1 4 ] m 3 1
n (sin ¢') - m tan ¢ Pn (sin ¢")

(7.1.17)

It should also be noted that multiple angle formulas
are used for evaluating the sine and cosine of mA.

The variational equations require the computation of
the matrix UZc’ whose elements are given by
2

o~ U
U2c>.. R (7.1.18)
1,] i j
where
r, = {x, vy, z}, the true of date satellite position.
U is the geopotential.

Because the Earth's field is in terms of r, sin ¢°',
and A, we write

T 3. 3U
Uje = C1 Uy Cp+ Z . Cox (7.1.19)
k=1 9°x

where
N ranges over the elements r, sin ¢', and A

is the matrix whose i, jth element is given by

X

aei aej

U,

90<
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is the matrix whose i, jth element is given

by aei

and

C2k is a set of three matrices whose i, jth

2
elements are given by 3° ey

ari arj

We compute the second partial derivatives of the
potential U with respect to r, ¢', and Ai:

2 nmax n
a°U 2GM CM —
—_— + N fm+1) [_j
arZ 3 r3 Lt 77 & \
r n=2 m=o0
. . m .
(Cnm COS mA + Snm sin mi) Pn (sin ¢" (7.1.20)

nmax

32y n n
(n+1) (2% (C cos mX
ard¢ Z T ;) nm

3

+ Snm sin mA) g (P (51n (1)')) (7‘1.21)
8ZU GM nmax

= = (n+1) Z
aTodA T n= 2

. m .
(-Cnm sin mA + S —cos mi) P (sin ¢) (7.1.22)
gl<
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U em QM3X, M D
= £
8¢2 . 4 (r) :E: (C,, cos mx + Spp Sin mi)
n=2 m=0
(7.1.23)
32 .
P~ (sin ')
— (* Gin @)
2
—— —— Jo m -C » )
ar ¢ & (}) EE: (-Cop sin mi (7.1.24)
= m=o
9 m
+ .
Spm €OS m\) ;E (Pn (sin &j
52y G nmax, 0 n
= M :z: %e 2
BAZ " zz: m (Cnm Cos mA (7.1.25)

n=2 " m=o

where

]
m . _ s+l . .
;g (Pn (sin ﬁ)) = Pn (sin ¢) - m tan ¢ Pg (sin ¢

(7.1.26)
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2
3 (pm

- m tan ¢ [P2+1

2

- m sec” ¢ Pg (sin ¢9)

(sin ¢3) = P2+2(sin ¢3-(m+1jtan ¢'pﬁ*1(sin )

(sin ¢") - m tan ¢'Pg(sin o

(7.1.27)

The elements of U2 have almost been computed.

What remains is to transform from (r, ¢, A) to
(r, sin ¢',7).
o'

oU U da0¢'

3 sin ¢ 3¢’ 3 sin ¢

2 5ot 3% 34" 3U
= +  —
2 3 sin ¢ aﬁz 3 sin ¢ 3¢

where

] 3
sin ¢' sec™ ¢'

80

This affects only the partials involving

(7.1.28)

37 ¢!

3 sin 62

(7.1.29)

(7.1.30)

(7.1.31)
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For the C1 and C2k matrices, the partials of r,
sin ¢, and X are obtained from the usual formulas:

r =, \/x2+y2+zz : (7.1.32)

z
sin ¢'= - (7.1.33)
r
_1(y .
} o= tan - g (7.1.34)
We have for Cl:
. h
AT, T (7.1.35)
1
9 sin ¢' -z T, 1 3z
——— = + _— ——
. 3 7.1.26
3T T T 3T, ( )
I 1 3y 3x
Sz |\ Y YT
.1.37
Bri X“+y ari ari (7.1.37)
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The CZk are symmetric. The necessary elements

are given by

2 ,
a'r } ri T, . i ari
ariar. r? T arj (7.1.38)
32 sin ¢' 3z T, T, 1 3z 3z 3T,
= —Tl - -I I'j + I'i + 2 L
ari arj T r d i 3 i o ;
(7.1.39)
3% -2r 3y 3X
| - v —
ari arj (x"+y*®) ari 3# |
(7.1.40)
1 3X 3y Ay X
+ - ——— —
x2+y2 ar, 3T, 3T. ar,
J J ] J
-
If gravitational constants, Chm ©T Snm are being
treated, we require their partials in the f matrix
for the variational equations computations. These
partials are
3 U GM fa)" T
> - g; = (n+1) ;7 - cos (mA) Pn(51n o) (7.1.41)
nm .
3 3U GM /a\" o
- = m — ( sin (m)\) P, (sin ¢) (7.1.42)
BCnm 3A T r e
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3aC 5¢' T
- m tan ¢'P2 (sin d)J

The partials for S, ., are identical with cos (m\) re-
placed by sin (mA) and with sin (mX) replaced by
-cos (m)).

These partials are converted to inertial true of
date coordinates using the chain rule; e.g.,

Qr

3 -3U\ 3¢’

83

p) U oM sa)\" m+1
-1l - — (—% cos (mA) fP_"" (sin ¢)
T

(7.1.43)

(7.1.44)
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The logic and appropriate array dimensions of the
ORAN program have been modified to accommodate uncertainties
in the coefficients of the zonal and tesseral harmonic terms
in the geopotential up to and inclduing (30,30). This is
near to the practical limit for the current 360 series
méchines. Beyond (30,30), the accuracy of the computations
of the perturbations and partials becomes poor for double
precision and excessive amounts of computing time are involved
in calculating the Legendre polynomials. However, the
highly localized gravitational anomalies that require higher
order spherical harmoncis for adequate representation can
be simulated by using the surface density model described
in Section 7.2.
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7.2 MASCONS AND SURFACE LAYER DENSITY

The surface layer density represents the acceleration
due to a localized gravity anomaly. This acceleration is pro-
portional to the area of the particular block in question and
inversely proportional to the square of the distance from the
spacecraft, The surface laycr density block can be repre-
sented as a mascon by equating the errors in the spacecraft

acceleration due to a mascon and local density layers. Let

RDEN be this acceleration. Then:
DEN. 3 (7.2.1)
J i pi

where ¢i is the density of block ij; Ai is the area of block i;
X5 is the distance along the j axis; and ‘ﬁS is the cube of
distance from block i to the spacecraft.

ORAN was modified to account for both propagations
of errors in this model and adjustments of the local density
values. Any number of blocks can be generated by the program.
However, the user is cautioned not to specify so many blocks

that an excessive amount of core is required.

For integration of these force model partials, the

differential equation

5 3%
d —_—
3p. af  ax 3f
= e m—— + ———
at? 53X 305 365 (7.2.2)

must be solved.
To do this, ORAN required the second term on the

right-hand side. It is found by differentiating EDEN with

respect to ¢i,
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3T 3R

_ Rpeny | A Ky
3¢, 36 4 0,2 (7.2.3)

The complete details of the surface layer density model in the
ORAN program have been given by Martin (1972).

MASCONS are modeled as point masses which may be located
at any point in the earth. These point masses perturb the satel-
lite orbit in the same manner as do geopotential harmonics and
are consequently treated similarly in the ORAN program. The
gravitational potential of a MASCON produces a satellite force
which can be integrated numerically along with the variational
equations for epoch element and geopotential coefficient partial
derivatives. Thus, as far és the EASST program is concerned,
the only thing unique about a MASCON is its forcing function in
the variational equations. The appropriate forcing function will
now be derived.

The potential of a mass m at a point which is a distance
o from the mass is, by definition

Gm
o (7.2.4)

where G is the gravitational constant. Similarly, the potential
of a mass (M-m) at a distance Py is

G(M-m) (7.2.5)
1
The potential of both masses at the same point, P, is
vy = GM-m) , Gm (7.2.6)
Dl P
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This expression for the potential V can be used to
derive the disturbing potential of a MASCON. Let m be the
mass of the MASCON and (M-m) be the mass of the body containing
the MASCON, so that the total mass within the primary body is
M. Then the potential of the central force is GM/r where r
1s the distance of the point P from the center of gravity of
the MASCON and the primary body. If the MASCON (m) is fixed
with respect to the mass (M-m), then we can write the disturbing

potential as

AV = V - GM/r
= GM-m) , Gm _ GM (7.2.7)
pl D_r

This expression can ?e simplified if we are pgepared
to neglect terms of orderzg) . Even for the moon %) is of
order 10 °. For the earth, for which n %s much smaller, we
are completely justified in neglecting i - With this ap-
proximation the disturbing potential can be written as:

av = BB OBy o+ yy 4 gz7) - SR (7.2.8)

where (x,y,z) are the coordinates of P, and (X,Y,Z) are the
coordinates of the MASCON relative to the center of gravity of
the system.

From the disturbing potential we can derive the compo-
nents of the disturbing acceleration by differentiation. The

x-component 1is

.

3 (aAv G G ' 3
( X) = - ;% (x - X)‘+ ;? {(x-X) + ;% (xX + yY + 22)}, (7.2.9)
101<

with identical forms for the other two components.
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7.3 LUNAR AND SOLAR PERTURBATIONS

Consider a system of n point masses m, (i =0,1,2,...n-1).

The equations of motion of the ith mass relative to thc mass

mg can be written:

. G(m,+m. n-1 = oy

;_=-_(_0____1)_1—._+sz "i5 _ Toj
01 s 3 01 j 3 K (7.3.1)

Ol ;o T. .- ..

J=1 ij 0;

L
J¥1

Let m denote the Earth and m, the satellite. The satellite's
motion relative to the Earth is then (mi is negligible with
respect to the other masses)

Gm n-l1 T ry

= _ 0 = . 17 Tys

To1 - 3 o1 Z my —J‘zr ‘,——J—r 7| - (7.3.2)
01 j=2 "1j 0j ]

The variational equation for an error in the gravitational
constant ij (j = 2,3,...n-1) is then

53 |
§ 12 < 01 > o
ar 3(Gm.) T,. T,
01 _ j _ 1 0
5—‘——— = yi = ——lg - —'lg . (7.3.3)

These variational equations are integrated numerically to

give 8(r01)/a(ij).
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Recent determinations of GM for the Moon give a value of
about 4902.6 kg3/secZ with a standard deviation of about 0.25
kgs/secz. Consequently a reasonable estimate of the uncertainty
in GM for the Moon is given by 0.25/4902.6 = 5.0x10-3.
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7.4 SOLID EARTH TIDES

The tidal displacement of mass produces a perturbation

in the gravitational field of the Earth, UD. Following the
small response assumption, Love (1911) represented the dis-

turbance potential, at the surface r=Re, by
UD(ReJ = k UT(Re)

This can be generalized (Kaula, 1968) as:

UD(Re) - :E: kn UTn(Re)
n=2

R

Rq

approximation, and

Since

UD(Re) F k2 UTZ(Re).

(7.4.1)

(7.4.2)

e << 1, terms involving n>2 can be neglected to first

(7.4.3)

There is an unresolved discrepancy with the best theoretical

value of kz which is equal to 0.290 and the best estimates
based on satellite measurements, which now center on 0.25.
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The second order third body disturbing potential at
the surface of the earth is given by

P, (cos 8) (7.4.4)

where G is the gravitational constant, Md is the mass of the
disturbing‘body, Re is the radius of the Earth, and Ry is

the magnitude of the vector ﬁd from the Earth to the disturbing
body. The angle 6 is the angle enclosed by ﬁd and the vector
r from the earth to the satellite. Evaluating the Legrendre
polynomial and using the vector formulation for cos 6 yields

GM RZ R, . 712
Ug e s —] -1f - (7.4.5)
R R

Letting the """ notation refer to the unit vector,

w
(a9

J

]

5 GM Res A ag
Up(r) = — —= — |3 (Ry'r)" -1 (7.4.6)
2 a T

The acceleration produced at position T by the solid
Earth tidal bulge is (Diamante and Williamson, 1972):

N 3 GMyR2\ '/ A o~y \
r = VUD = - - kz 3 7 D(Rd'r) -1 r
2 Rd by
5 A ~ ~ A 2

1 GMd R (Rd-r) ~ (Rd-r) ~

+ 60—k, —— = | 2" R, - — 1 . (7.4.7)
2 4,3 S d
2 Rd T T T



The variational equation 1is:

A 1 GMd.Rg A A
—_— | — = = — [3-15(R;*r)"]r + 6(R,*T)R
at? \sx 2 RS 7 d (Rq-r) dy
2 d §
k., GM, R 7 =
s 2 d e [105(ﬁ r)? (? T ) 30(R, - 1) (ﬁ i
L . ® — - T .
2 Ri o d ok,/ - ¢ d ok,

(7.4.8)

“r o oam o~ S e~ ~ 2 I -~ Amdiee AT T Do ) —
The variational equation is actually given by the sum

of the expression above for the Moon and Sun, i.e., with the

subscript "d'" replaced by '"s" and '"m".

These equations were

derived under the assumption that the response time of the Earth

is negligible. Actually, the

angle § = n At where n_ 1is
o o

and At is the time lag of the tide.

This phase lag may be

tide will be displaced by some

the angular velocity of the Earth

accounted for by replacing ﬁd in the above Equation with a vector ﬁg

which corresponds to Kd rotated through an angle § in the direc-

tion of Earth's rotation (Diamante and Williamson, 1972).
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7.5 LUMPED GEOPOTENTIAL ERROR DUE TO GRAVITY MODEL
DIFFERENCES

The ORAN program possesses the capability of modeling
the total set of errors in the set of spherical harmonic
coefficients used to perform an orbital data reduction.

The rationale for the use of this form is basically as
follows. Let X,pp Tepresent a satellite orbit generated

or estimated using a set of geopotential coefficients
estimated by an investigator, or group of investigators,
which we have denoted by APL. Similarly, let Xgpg Tepresent
the same orbit ephemeris obtained (estimated) in the same
way except that geopotential coefficients estimated by a
group denoted by SAO were used. Let us further assume that
group APL and group SAO operated completely independently
using different tracking data on different satellites.

On this basis, we deduce that errors in their geopotential
models and thus geopotential dependent errors in XAPL and
Xgag aTe independent. It is not necessary to assume that
the two models are equally accurate.

Let us then consider the variance of the difference

between x and Xga0® We can obtain this variance in terms

APL
of the variance of the individual model errors by first

writing the difference as

- 8x

XapL ~ Xsao T(Xapr T X)) m (XgapX¢) = SXupp sa0 (7.5.1)

where

X, 1s the true ephemeris and SXAPL and 6XSAO are the

t
errors in the two orbits using the two different geo-

potential models. Then

107 <
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_ ] T
Var (xppp-Xgag) = El(Xppp-Xga0) (Xppp-Xgag) ']

(7.5.2)

‘Var SXAPL + Var SXSAO

For the special case in which the models are of equal variance

(accuracy), we have

Var (éx = Var (6x

_ 1 _
APL) sa0) = 7 Var (Xppp-Xgag) (7.5.3)

If the models are not of equal accuracy, but we can relate
the variances of the two models by a constant factor,

Var'(sxAPL = k Var (SXSAO’ (7.5.4)

we then have the relation

= 1 -
Var (8xgp0) = T3 VaT (Xppp~Xguo) (7.5.5)
If the SAO model is the more accurate, then

1 .1 -
"k ~ 7 (7.5.6)

and we have an upper limit on the coefficient of the gravity
model difference variance which is needed to obtain the vari-
ance of the SAO model.
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In practice, we would not expect k to be exactly a
constant, nor would we expect to find geopotential models
with completely independent errors, but we would expect to
be able to choose models which are nearly ihdependent and
with a suitable definition of the variances of GXAPL and
SXSAO (e.g., sampled over all possible orbits), then k is
a constant. In any event, we will use the above relation
obtained using the SAO gravity model, in terms of the gravity
model difference effect.

It is possible to compute the effects on an orbit
of a gravity model difference using the integration of a
set of variational equations. Consider first the variational

equation for a spherical harmonic which we can write as

a?_ [aT(n)) . 2E(e) aF(r) , AF(H) HF(1)

2 — x
dt acnm ar(t) ar(t)

+ :r(t) (7.5.6)
Cnm

acﬁm acnm
Where T(t) is the satellite position (x,y,z) at time t and
r(t) is the acceleration. Note that the acceleration due to
gravity is dependent only>on position. Therefore, the second
term on the right hand side of the above equation is zero.
The effect of a small error Gcnm on the orbital parameters

at time t is given by

- 9T oT 3T
> (8T) = _é r +29r I §C (7.5.7)
dt ar 8Cn aC

m nms

A corresponding equation holds for the Snm coefficient of
the same degree and order
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gff (8T(t)) = ‘a%(t) ar(t) IT(t) ] 55 (7.5.8)

— , nm
dt 3T(t)  3S 3S |

nm

If we sum (7.5.7) 244 (7.5.8) for a range of values of n and m
we get the variational equation for the total error in the

orbital parameters at time t due to errors in the spherical
harmonic coefficients

2

d - °F 3T ar(t OT(t
" (6T(e)) = ) r(t) (2r(t) ¢+ 2E(E) 45 |+ 2E(D) o o
dt £ |a7(e) \ac,, 3S 3Spm
bl (7.5.9)
+ 9r(t) s5C
5C nm

nm

Within the 1limits of linearity (and ORAN is a linear error
analysis program), the quantities ih brackets are the orbit
differences due to a set of differences (or errors) in the
spherical harmonic coefficients. We specialize this set of
differences to be obtained by differencing geopotential

model sets which are both as accurate and independent as
possible. Equation (7.5.9) then gives the variational equation
for the effects which the set of coefficient differences pro-
duce on the estimated orbit.

In ORAN each spherical harmonic coefficient may be

1) adjusted, 2) treated as an individual unadjusted parameter
or 3) included in the lumped parameter model of equation (7.5.9).

96 440<



7.6 DIRECT SOLAR RADIATION PRESSURE

For a spherical satellite with an integrated reflectivity

Bk, the acceleration is (Diamante, 1972b):

- _ s /a
a=71 = -\)(l+pR) -1 - (7.6.1)
c \m

where
0, when the satellite is in the Earth's
shadow,
\):
1, when the satellite is illuminated by .
Sun,
T = satellite position vector (Earth centered
coordinate system),
ﬁé = position vector of the sun (Earth centered
coordinate system),
A = cross-sectional area of the satellitel,
m = mass of the satellite.
1

The cross-sectional area is in a plane normal to the direc-
tion of the radiation flux. A is thercfore constant for
spherical satellites. Illowever, for other geometries, vari-
able cross-section along the orbit must be taken into
account or an average value of A adopted.
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Clcarly, when fl > 0, the satellite is always in full sun-
light. If fl < 0, the satellite will be in shadow when:

T°T - (T*Rg)" < R (7.6.2)

Re is the radius of the Earth. Let:

3 2 5 L] 2 - 2
fz =71" - (Rs T) Re (7.6.3)
Then
1, fl >0
v =<1, fl < 0 and fZ >0 (7.6.4)

\C, £, < 0 and £, < 0

2

An error in the direct solar radiation pressure force
model can be expressed as an uncertainty in ER’ or as an
uncertainty in CR. Then

3 df /T S /A , 3T (Rg-T)
T = ) = -V -1 - do 1+CR——’ v -—__-—-_7—3'
3Cy dt” \aCy c \m 3C IRS-rI
or _
+ — « V]}F, : (7.6.5)
BCR
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where V is the gradient opecrator and T includes the effects

of all the other forces acting on thec satellite. The vari-

ational equation for %é— reduces to (Diamante, 1972b):
R .
3 . d2 T
—T = — —
BCR dt BCR
A d0 —3 1 +3 — 5 *
c \m IRS-r] |Rg-T]| 3Cq
CR oT oT _
- — — 3 + — v) F - (7.6-6)

7.7 EARTH REFLECTED RADfATION

Over the long term, the radiation budget of the Earth
must be in equilibrium. A large fraction of the solar radia-
tion received by the Earth is reflected back, almost immedi-
ately, at nearly the same wavelengths at which it is received.
The ratio of the reflected radiation to the incoming solar
YRr* The best estimate of the

long-term mecan global albedo for the Earth has been obtained

flux is known as the albedo,

from TIROS VII measurements:

Yy = 0.32 (7.7.1)
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The remaining fraction of the incoming solar flux 1is absorbed
by the atmosphere, oceans and surface of the Earth and is
eventually re-emitted as the far-infrared planctary radiation.

From equilibrium requirements, this fraction is:

YIR = 1 - 'YR = 0.68 . (7.7.2)

Part of the reflected radiation is scattered diffusecly
and part is scattered specularly. The specular reflection is
mostly from small bodies of water scattered over the surface
of the Earth and occasional calm areas of the oceans. There-
fore,

Yo Yo * e (7.7.3)

where the subscripts D and S stand for diffuse and spectral.
Using a value of 4/3 for the index of refraction of water,
the refractivity at normal incidence is 0.02.

Furthermore, although 71% of the Earth's surface is covered
by water, only a small fraction of that can be expected to

produce specular reflection at any one instant in time.
Therefore, to good approximation,

yg = 0.32 | (7.7.4)

Since for the purposes of error analysis we need only
consider the radial accelerations, we have employed a simplified
analytic model for the Earth reflected radiation (Diamante,
1972b).
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Danjon (1954) made obscrvations of the Earth-shine
reflected from the dark hemisphere of the Moon. He found
that the phase function of the Earth is better represented
by a non-Lambert Law expression, At great distances, the
Danjon relation can be approximated by a (l-cosBS)2 dependcnce.
The Earth receives solar energy at a rate:

d 2
ﬂRe s{-=2 ergs/sec,

Rs

and reflects:

C(r) (l-cosBs)z,

then the total energy flux through a spherical surface of
radius r, assuming that the flux is radially outward, is:

™
2 . 2
2nr C(?) Jf sin S(1-2 cosBS + COS BS)dBS
0

16 2
= — 7 1r° C(r).
3
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Setting this equal to YDNRGZS:

C(r) = ° (5‘3) s(d°) (7.7.5)
- — YD e—— . .

Therefore, the Wyatt-Danjon expression for the radiation
pressure is '

Re ’ S do : 2
P = 3/16 YD(——) - | — (l-cosss) R (7.7.6)
T ¢ ‘R
S
and the radial acceleration is:
R _ A gdn T R 5
rAy = 3/16 yp(1+pp) — — (__) (-) (1-cosB )" r.  (7.7.7)
m c \R T

A force error in the Earth-reflected radiation pressure

can be modeled as an error in Yp- Noting that:

;osBs = RS T | (7.7.8)

where the """ notation again denotes the unit vector, the

variational equation is then:
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aTr
+ (-—_.._. . V) F (7.7.9)

9Yp |
or
3T 3 ~ 3 As jant o, 3T
_ % — (A, T) — (1+p,) = = [—}| R . “ G(r) + {— +« V|F
3y 3y, 16 R mc \R 3y

D D s D
(7.7.10)

where

!

~ 2 A - - — -
1 R T Z'Y R T A aI' ~ T al’ T
T T T T BYD 'y BYD T
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7.8 ATMOSPHERIC DRAG

The acceleration r on a satellite due to the atmos-

pheric drag force is given by the expression:

g

T o= -1/2 ¢ I—VI—S— ol v | T (7.8.1)
s
where
CD is the coefficient of drag for satellite,
AS is the cross-section area of the satellite,

(m?)

mg is the mass of the satellite (kg)

|

is the velocity vector of the satellite,
relative to the atmosphere (under the
assumption that the atmosphere rotates
with the Earth) (m/sec),

is the position vector from the center of
the Earth to the satellite (m),

o is the mass density of the atmosphere
at position r (kg/ms).
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Strictly speaking, AS is the area of the satellite projected
in the Vr direction. However, in practice the mean cross-

section is used (constant) and CD is also taken to be a

satellite dependent constant.

The major source of error in determining the drag

accelerations arises from uncertainties in the density, op.

Since these uncertainties can usually be expected to exceed

drag coefficient uncertainties, density errors can con-

veniently be represented as errors in CD. Let
1 /A . .
F = -_(_S.)p’rlf
2 -

3T

The variational equations for = are then:

D D D
3T d aT )
aC dt \3cp

where F involves the effects of all other forces (assumed

independent of velocity) and V is the gradient operator.
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The righthand side of equation (2.3) may be expanded,
remembering that p is not a function of velocity. The ex-
pressions for the partial derivatives have been given by
Williamson, Martin and Dutcher, 1971. All derivatives of
p, however, must be evaluated numerically for a given satel-
lite orbit using the atmospheric density model described
below. An error in the satellite position due to an uncer-
tainty in CD (drag error) is then obtained by integrating

A . or
the .above variational equations for 5T -
D

The Jacchia 1965 Model Atmosphere, with revisions
through 1968, has been selected to represent the atmospheric
density in the drag error calculations of the ORAN program.

The atmospheric density calculation in the ORAN pro-
gram is performed by subroutine DENSTY. This subroutine is

a modification of the one currently emplovyed in the GEODYN
programs and is based on the static diffusion models of

Jacchia (1964, 1968).

The 1968 Jacchia Model Atmosphere allows the calcula-
tion to be structured into two major steps. In the first
step, the exospheric temperature is calculated from data on
solar flux, geomagnetic index, solar ephemeris and satellite
position information. In the second step, the density is
calculated as a function of the exospheric temperature T_,
and the satellite altitude above the surface of the Earth, z.
This second step is accomplished by using a polynomial fit to
‘tabulated solutions of differential equations. The complete
procedure is summarized in Figure 2.1.
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The daily value of the 10.7 cm solar flux strength,

is in units of 10 22

F10.7, watts/mz/cycle/second of band-
width. In the GEODYN program, the daily values of F10.7

are data input and F10‘7 is obtained by averaging the daily
values over the preceding 54 days (two solar rotations).

In the ORAN program, it is anticipated that for most error
analysis applications and mission planning, the daily values
will either be unavailable (before the fact) or represent an
unnecessary burden on storage and computation for the level

of accuracy required. Consequently, in the ORAN program,

Average values of F10'7 have been obtained by averaging the
daily record of F10_7 over intervals of the ll-year solar
cycle corresponding to periods of high, medium and low solar
activity. These values are 218.80, 130.62 and 124.35, re-
spectively. Commonly accepted values of F10'7 for very high,
medium and very low levels of solar activity are 250-275,
150, and 65-75, respectively. Appropriate values may be
selected for the anticipated solar activity levels in the
period of interest.

The correction for geomagnetic activity was provided
by Jacchia, Slowey and Verniani, 1967 and is based on ap,
the three-hour planetary geomagnetic index. In applying this
result in the ORAN program, the three-hour equivélent plane-
tary amplitude ap was replaced by the daily equivalent plane-
tary AP in order to minimize data input and storage. The
index Ap is defined as the arithmetic average of the eight
values of ap for a given day. For application of the
geomagnetic correction in ORAN, the same remarks apply here
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as for input data on F10_7. Average values of Ap corres-
ponding to the same averaging periods over the 11 year solar
cycle employed in the calculation of average values of F10.7
for periods of high, medium and low solar activity were
found. These are respectively Ap=20.24, 13.63 and 10.98,
corresponding to the values F10.7=218.80, 130.62 and 124.35
for high, medium and low solar activity. The indices ap and
Ap can range from 0 to 400. Days when Ap<2 are considered
to be geomagnetically quiet and slightly disturbed days are
those for 4<Ap<10. Moderate disturbances are in the range
Ap=40-50 and intense disturbances range Ap 100.
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7.9 MICROMETEORITE IMPACT AND THRUST ERRORS

Collision of a spacecraft with micrometeorites can
be modeled by uncertainties in spacecraft thrusting. If
?& is the acceleration dge to the thrusting, then Ehe error
in position and velocity due to an uncertainty in T.. at the

T
time of application is

[P
gl
=

- (AT an)?, (7.9.1)

>
.1
"
7]
(>
]
|
[N

o
p—‘
"
>
=
[f}

— 4Ty = (8Fp) (88) (7.9.2)

where At is the duration of the thrust and AF& is the uncertainty
in the magnitude. These relations provide the initial values
for integrating variational equations to provide the effects on

the orbit as a function of time.

Information on the meteoric environment near to the
Earth and in interplanetary space, useful for application of

the ORAN error model, is provided in Space and Planetary
Environment Criteria Guidelines For Use In Space Vchicle

Development, 1971 Revision.
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